
Last Updated: April 9, 2023 2:37 PM

PressCal Customization
Before you delve into the details below, there are some alternatives. First, PressCal has a command-line
interface. This opens up possibilities for automation, and/or incorporation into existing software. Second, it
is possible to make custom grading sets, either with a setting, or added to the grading database. Third, there
is a statistical output capability for data analysis with R or Excel. Finally, the authors are available for hire,
to perform customization work. If you have an idea that would be of general use, we’d like to hear about it.
We intend to improve the software, and are open to suggestions.

General Description
PressCal is a Perl script and collection of supporting modules, supplied as a TextMate bundle. Perl is an
interpreted language, which makes PressCal easy to customize, with some basic programming knowledge.
The script is excessively commented. You are welcome to use it freely, under terms of the GPLv3 license.

Bundle Structure
The PressCal bundle is located in the user’s Application Support folder. Install PressCal, if you haven’t
already. Using the Terminal app, open this folder with the following command (followed by return),

open ~/Library/Application\ Support/TextMate/Pristine\ Copy/Bundles/
PressCal.tmbundle/Support/lib/perl5

This folder contains the Perl script, PressCal.plx, and folders containing the supporting Perl modules.
These are the components you’re most likely to change. The modules we developed are in the ICC folder.

There are additional Perl modules located in the darwin-thread-multi-2level folder. These so-called
XS modules are written in C language, compiled, and linked to the main Perl program. The XS modules we
developed are located in the ICC/Support folder. The lapack.pm module provides an interface to the
BLAS and LAPACK libraries. The levmar.pm module is an interface to the levmar library. The Rmath.pm
module is an interface to the Rmath library. These are required modules, but it’s unlikely you’ll need or
want to alter them.

Documentation
There is no separate documentation for the PressCal.plx script. Of course, the user manual explains the
functioning of PressCal, and its settings. The script itself is excessively commented (much of the code is
self-explanatory, but is commented anyway). Several of the ICC modules are properly documented.

Development using TextMate Editor
To open PressCal in TextMate from the Terminal,

open -a TextMate ~/Library/Application\ Support/TextMate/Pristine\ Copy/Bundles/
PressCal.tmbundle/Support/lib/perl5/PressCal.plx

If you plan to edit PressCal, save it to a convenient location (not in the PressCal bundle). This will ensure
you don’t accidentally overwrite your edited version by updating or reinstalling the TextMate bundle. It also
ensures that PressCal will continue to function normally, when run from a settings (YAML) file.

Next, open TextMate’s preferences and click on the “Bundles” icon. Scroll down to the Perl bundle, and
check that box. TextMate will download and install the Perl bundle. This adds Perl-specific text coloring and
commands, including the ability to run the script using the zR key combination.

Test this by entering zR. This should result in an immediate error, beginning with “Can’t locate ICC/
Profile.pm in @INC”. The script was saved to a new location, and Perl cannot find the modules it needs.

https://perldoc.perl.org/perlintro
https://perldoc.perl.org/perlmod
https://macromates.com/
https://www.gnu.org/licenses/quick-guide-gplv3.html
https://optimalmethod.org/resources/PressCal_16.1U.dmg
https://metacpan.org/release/ICC-Profile
https://perldoc.perl.org/perlxs
http://performance.netlib.org/lapack/
http://users.ics.forth.gr/~lourakis/levmar/
https://cran.r-project.org/doc/manuals/r-release/R-admin.html#The-standalone-Rmath-library
http://optimalmethod.org/resources/PressCal_Manual_v16.1.pdf
http://optimalmethod.org/resources/doc/index.html

Page 2

This is easily fixed by adding this (single) line to the saved PressCal version,

use lib "$ENV{'HOME'}/Library/Application Support/TextMate/Pristine Copy/
Bundles/PressCal.tmbundle/Support/lib/perl5";

This line should be located between the existing program lines =cut and use ICC::Profile;.

Version 16.3U of the PressCal.plx script contains 107 functions in 10,905 lines of code. The TextMate edi-
tor has a “folding” capability that makes it feasible to edit such a large document. When you open PressCal.
plx for the first time, the code should be completely folded. If line numbers are enabled (opt-zL key), you
should see something like this as you scroll down,

The little triangles in the left-hand margin control folding. If you click on a triangle, that region will unfold
(open up). If you click the triangle again, it will fold (close). You can fold or unfold all contained triangles
with opt-click. You can fold or unfold all triangles in the document with the opt-z0 key. Because the script
is so large, it is best to keep everything folded, except for the function(s) you’re working with.

Note that, when editing in TextMate, PressCal is using the built-in settings, which are displayed in green,
near the start of the script. Add the following lines to the built-in settings,

set command (0 - curves, 1 - ink balance, 2 - grade)
command: 0
set debug mode (0 - normal, 1 - debug)
debug: 1

The command: setting selects the PressCal tool, and the debug: setting enables full display of errors and
warnings. Test this with the zR key combination. Now, you’re ready to program.

Program Overview
When you run PressCal, the main function is executed. The main function is the curve building tool. The ink
balance and grade tools were added later. The ink_balance and grade functions were identical to the main
function, up to a certain point. So, we used Perl’s goto function to factor the common code. Near line 360,
the program may branch to the ink_balance or grade functions, depending on the command: setting value.

https://perldoc.perl.org/functions/goto

Page 3

Settings
PressCal has over 40 defined settings, which are usually supplied as a YAML file. The load_settings func-
tion is called near the start of the main function. This converts the YAML file to a Perl hash. Comments are
removed, and the remaining text is matched with a regular expression, to extract key and value, line by line.
The hash values are further processed using Perl’s eval function. You may add your own settings, providing
you don’t use existing keys.

A setting is accessed by its key. For example,

$path = $set->{'profile_path'};

You may add an element to the hash,

$set->{'my_key'} = $my_value;

The value may be a scalar, an array reference, a hash reference, or a function reference.

Reference Profile
The reference profile provides the color target. The profile is opened as an ICC::Profile object. It is normally
a printer profile. We use the A2B1 tag (device to PCS) for optimization, and the B2A1 tag (PCS to device) to
select samples. These tags are also opened as objects, and have a transform method,

$Lab = $A2B1->transform($device);

$dev = $B2A1->transform($Lab);

If the reference profile is an RGB working space (display profile), equivalent A2B1 and B2A1 objects are
created.

The A2B1 and B2A1 tags contain media-relative data. The media white point is stored in a separate profile
tag, and is copied to the $wtpt variable.

Press Measurements
Press measurements are saved from other software, such as X-Rite’s i1Profiler. There are two standard
file formats used for measurements – ASCII and CxF3 (XML). PressCal will open either format into an
ICC::Support::Chart object. Color measurements may be spectral, L*a*b*, or XYZ. Spectral measurements
are converted to colorimetric using the color: setting. The default colorimetry is D50/2 degrees. Measure-
ments are accessed using the device, spectral, lab, and xyz methods,

$Lab = $press->lab($samples);

$dev = $press->device($samples);

The argument for these methods is a list of samples ($samples). The list is an array reference,

$samples = [1, 2, 3, 4, 5]; # samples 1, 2, 3, 4, and 5

$samples = [1 .. 5]; # samples 1 thru 5

Note the sample index is base 1 – there is no sample 0.

There is an optional setting for plate curves, to be used when the test plates aren’t linear. If this setting is
defined, plate curves are loaded, and applied to the device data used at various points.

Ink Map
The ink map is an array with an element for each ink channel. The ink map describes how the tone curve for
each ink channel will be generated. If the element is an integer, that channel will be used in the optimiza-

https://perldoc.perl.org/functions/eval
https://optimalmethod.org/resources/doc/ICC/Profile.html
https://optimalmethod.org/resources/doc/ICC/Support/Chart.html

Page 4

tion. In addition, the element maps the ink channel to the device channel of the reference profile,

$ink_map = [0, 1, 2, 3]; # normal CMYK mapping

.$ink_map = [3, 0, 1, 2]; # press data is KCMY, K maps to device channel 3, C
maps to device channel 0, etc.

If the element is not an integer, that ink channel will not be used in the optimization. Instead, it’s tone curve
will be computed with an alternate method, A, B, C, D, E, or F – TVI, S – SCTV, N – G7 Black, L - Linear,

.$ink_map = [A, A, A, B]; # CMY computed using TVI curve A, K computed using TVI
curve B, as defined in ISO 12647-2

.$ink_map = [0, 1, 2, 3, S, S]; # normal CMYK mapping, 5th and 6th ink channels
computed using SCTV

.$ink_map = [0, 1, 2, N]; # CMY computed using optimization, K computed using G7
black NPDC

Sample Selection
The select: setting is a string of tokens used to select samples for optimization. This string is supplied to
the select_token method of the press object. Samples containing non-optimized inks are filtered out.

The ced_select: setting is a string of tokens used to select samples for the CED graphs. By default, this is
the same as the optimization selection. The selection is influenced by the ink map, so the ced_ink_map:
setting is also provided.

Sample sets for the alternate curve methods, A, B, C, D, E, or F – TVI, S – SCTV, N – G7 Black, are located by
the ink_ramp function.

The sample selection token rt() selects samples based on a round-trip through the reference profile,

$round_trip = $B2A1->transform($A2B1->transform($device));

If the round-trip black %-dot value changes less than the rt() parameter, that sample is included. These
samples are realistic, in that they’re close to colors appearing in images made with the reference profile.
This selection may be viewed as filtering out samples that are unlikely to appear in images, e.g. darker gray
CMY only samples.

Optimization
The Levenberg-Marquardt optimization technique is used to compute curves. PressCal uses open-source
levmar library. Levmar is written in C, and is accessed using the ICC::Support::Levmar XS module, which
loads and interfaces a compiled version of levmar.

Levmar provides a variety of functions, e.g. single or double precision, analytical or numerical Jacobian,
constrained or unconstrained. We use the double precision versions, since Perl’s internal representation
of floating point numbers is double precision. We use the numerical Jacobian versions, because an analytic
Jacobian is not feasible with ∆E00 color errors. We use inequality constraints to keep the curves mono-
tonic, and linear equation constraints when curve endpoints are fixed. These constraints are set by the
add_li_constraints and add_le_constraints functions.

Levmar requires a function to evaluate the color errors. This function (func_opt_curves) is called repeated-
ly until the color error is minimized. This often requires hundreds of levmar iterations. Most of the function
calls are made to compute the numerical Jacobian.

The curves are Bernstein polynomials, and levmar optimizes the Bernstein coefficients. Each curve is imple-
mented as an ICC::Support::bern object. The object coefficients are provided to levmar as aliases, using the

https://optimalmethod.org/resources/doc/ICC/Support/Chart.html#select_token
http://users.ics.forth.gr/%7Elourakis/levmar/
https://optimalmethod.org/resources/doc/ICC/Support/bern.html

Page 5

Data::Alias module. The degree of the Bernstein polynomials is determined from the sample data by the
function make_cvst_auto. The degree: setting, if any, overrides the determined value.

The alternate curve methods, selected in the ink map by A, B, C, D, E, F, S, or N, also use levmar and Bern-
stein polynomials. These curves are computed individually by the make_TVI_curve, make_SCTV_curve,
and make_G7K_curve functions. The optimization targets for these functions are formulas, not the refer-
ence profile.

Curve Output
The ICC::Support::bern objects are contained in an ICC::Profile::cvst object (curve set). After the curves
are optimized, they’re output in various formats, according to the output: setting. This setting is a string
of tokens, with optional parameters, for different curve formats. The formats are actually ICC::Profile::cvst
methods. To add additional curve format(s), just add new method(s) to the ICC::Profile::cvst module. The
existing output methods may be used as a guide.

Keep in mind that output involves computing discrete points using the _transform method of the
ICC::Support::bern objects. This method has a direction parameter – 0 for forward, 1 for inverse. PressCal
curves, as computed, are actually inverse functions, so you’ll output them with this parameter set to 1.

Curve Graphs
The solid ink colors are graphed as an a*/b* plot. Then, the individual and composite color curves are plot-
ted. Finally, the cumulative error distribution, before and after optimization, is plotted with fitted gamma
curves.

The graphs are HTML files using the RGraph JavaScript library. These files are created using the Perl Tem-
plate module, which merges a static template with variable data. The HTML files are created at different
points in the main function, and their paths saved until just before the program exits. They are then opened
as a group using the default web browser.

Ink Balance
As mentioned earlier, the ink balance tool is a branch of the main function. The settings, reference profile,
and press measurements are loaded. The solid ink colors and errors are computed and printed. At about
line 360, a goto command branches to the ink_balance function.

The ink_balance function creates a spectral model of ink layers of varying thickness, based on the current
solid ink measurements. Then, the ink layer thicknesses are optimized to minimize the weighted color er-
rors, relative to the reference profile. With spectral data, we can compute the ink densities before and after
optimization, which provide the pressman with relative density adjustments.

In addition to computing density adjustments, the trapping values for the spectral model are displayed for
each of the overprint colors. Ideally, all of these values would be 1, indicating perfect trapping. Normally,
trapping values will be less than one. The spectral trapping model needs to know the ink sequence, entered
with the ink_sequence: setting. The ink_weight: setting sets the weight for each of the color errors during
optimization. By default, the CMY and RGB errors all have the same weight. With this setting, the CMY over-
print has a weight or 0. If you plan to make G7 curves, you may want to change this value, to pull the CMY
overprint towards neutral. This will increase the error of the other solids, but may be a good trade off with
G7 curves.

Ink Balance Graphs
The solid ink colors are graphed as an a*/b* plot, before and after optimization. The colored shapes, either
circles or ellipses, are computed from the target color, and the ∆E metric. The black dots are the actual mea-
surements. If you touch them with the cursor, the L*a*b* values are displayed, along with the color error.

The graphs are HTML files using the RGraph JavaScript library. These files are created using the Perl Tem-
plate module, which merges a static template with variable data. The HTML files are created at different

https://metacpan.org/pod/Data::Alias
https://www.rgraph.net/
https://metacpan.org/pod/Template
https://www.rgraph.net/
https://metacpan.org/pod/Template

Page 6

points in the ink_balance function, and their paths saved until just before the program exits. They are then
opened as a group using the default web browser.

Grading
As mentioned earlier, the grading tool is a branch of the main function. The settings, reference profile, and
press measurements are loaded. The solid ink colors and errors are computed and printed. At about line
360, a goto command branches to the grade function.

The grade function uses a database created by a separate script, PressCal_grade_database.plx, and saved
as a Storable file. The database is actually just a Perl hash, using compound keys to obtain a list of grading
functions and parameters, which comprise the selected grading rules. For example,

$grade = $db->{'g7'}{'36'}{'colorspace_proof'};

This returns the node for G7 pass/fail version 36, colorspace proof, as a hash reference. The hash keys
correspond to function names that perform tests, e.g. 'substrate', 'cmyk_solids', 'rgb_solids', 'cmy_ramp',
'k_ramp', 'all_samples'. The hash values are an array of parameters for that test function, typically the
error types and limits. These functions and parameters are explained in the Custom Grading section of the
user manual.

Each of the test functions must locate the specified samples, evaluate the color errors, and determine if the
test is passed or failed. The number of tests, and the number of tests failed, is tallied and displayed at the
end.

It is possible to make a custom grading set using the grade: setting. This is a hash reference, like the grade
node described above. You could also add custom function(s). If you want to alter the grade database, you’ll
need the PressCal_grade_database.plx script, available from the authors by request.

Grading Graphs
The solid ink colors are graphed as an a*/b* plot. Then, the individual color ramps are plotted, either as
SCTV or TVI values. These plots are meant to give a visual indication of the process linearity. If applicable
ramps of CMY gray, CMYK gray, and black inks are plotted as L*a*b* errors. Finally, the cumulative error
distribution is plotted with a fitted gamma curve.

The graphs are HTML files using the RGraph JavaScript library. These files are created using the Perl
Template module, which merges a static template with variable data. The HTML files are created at differ-
ent points in the grade function, and their paths saved until just before the program exits. They are then
opened as a group using the default web browser.

Program Data
PressCal is distributed with a large assortment of data files. These are located in the ICC folder,

open ~/Library/Application\ Support/TextMate/Pristine\ Copy/Bundles/
PressCal.tmbundle/Support/lib/perl5/ICC

The Data folder contains several YAML files used by the ICC::Support::Color module. There is no reason to
alter these files. The Grade folder contains the grading database, grade_db.sto, and several key collections
used by the grade functions. The Test folder contains the built-in test data – measurements and ICC profiles.

Returning to the ICC folder, the JavaScripts folder contains files used to create the HTML graphs, notably
the RGraph library. Several of the RGraph files have been slightly modified. The Templates folder contains
XML and Template Toolkit files, used by the ICC::Profile::cvst module to output curves and by PressCal to
make the HTML graphs.

PressCal assumes the Data, JavaScripts, and Templates folders are located within the ICC folder. If you
move them, program modifications will be required.

https://metacpan.org/pod/Storable
https://optimalmethod.org/resources/PressCal_Manual_v16.1.pdf
https://www.rgraph.net/
https://metacpan.org/pod/Template

Page 7

Porting to Another OS
The distributed version of PressCal uses TextMate as the user interface. TextMate is Mac-only software, so
an alternative user interface would be required for another OS. Likely candidates are Electron or Visual
Studio Code, both of which utilize Node.js.

PressCal also requires Perl, which is built into many, but not all, OS. On Windows, we like the Strawberry
Perl distribution. PressCal was developed using Perl v5.18.4, which is built into MacOS 10.10 through 10.15.
Another version using Perl v5.30.3 exists for compatibilty with macOS 11 and newer. This version contains
Universal Perl modules compiled for Intel and ARM processors. The PressCal.plx code is very portable, and
should run without modification on any version of Perl v10.0 or later.

PressCal requires a list of Perl modules, some of which are XS modules that require compiling. On a Mac,
you will need to install Command Line Tools. Most of the required modules are built-in or can be installed
automatically using CPAN. Here is a list of required CPAN modules,

ICC::Profile
Math::Matrix
YAML::Tiny
Data::Alias
List::Util
Scalar::Util
Sub::Util
Template

Three XS modules are only available from the authors by request,

ICC::Support::Lapack
ICC::Support::Levmar
ICC::Support::Rmath

These are interfaces to the math libraries used by PressCal. MacOS has built-in versions of BLAS and
LAPACK (Accelerate framework). You may need to install these libraries on other OS. The levmar software
does not need to be installed. But it links to the LAPACK library. The Rmath library must also be installed.
These modules include build scripts for macOS, which will require some modification for other OS.

https://www.electronjs.org/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://nodejs.org/
https://strawberryperl.com/
https://developer.apple.com/download/more/?=xcode
https://www.cpan.org/modules/INSTALL.html
http://performance.netlib.org/lapack/
https://cran.r-project.org/doc/manuals/r-release/R-admin.html#The-standalone-Rmath-library

